Definition 1. <u>One-to-One Function</u>: A function is called a **one-to-one** if each y-value in its range corresponds to only one x-value in its domain.

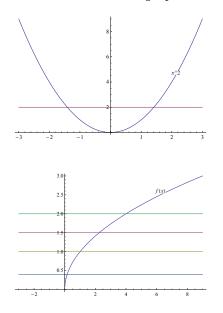
The geometric interpretation of a one-to-one function is called the horizontal line test.

Definition 2. <u>Horizontal Line Test:</u> A function f is one-to-one if **no** horizontal line intersects the graph of f in more than one point.

Example 1. Use the horizontal line test to determine which of the following functions are one-toone.

- **a.** $f(x) = \sqrt{x}$.
- **b.** $h(x) = x^2$.

<u>Solution</u>: To decide whether the function is one-to-one or not using the horizontal line test, we need to sketch its graph.



We see that no horizontal line intersects the graph f in more than one point, then $f(x) = \sqrt{x}$ is one-to-one. The function $h(x) = x^2$ is not one-to-one because the horizontal line y = 2 intersects the graph of h in two points.

Definition 3. <u>Inverse Function</u>: Let f(x) be a one-to-one function. Then we define the inverse of f, denoted by f^{-1} ,

$$f^{-1}(y) = x$$
 if and only if $y = f(x)$

Remark 1. From the definition of the inverse function, we have

Domain of
$$f = Range$$
 of f^{-1} and Domain of $f^{-1} = Range$ of f

Remark 2. §§ WARNING§§ The notation $f^{-1}(x)$ DOES NOT mean $\frac{1}{f(x)}$.

Example 2. Let f(3) = 5, then find $f^{-1}(5)$.

Solution: By the definition $f^{-1}(y) = x$ if and only if y = f(x), then letting x = 3 and y = 5 implies 5 = f(3) if and only if $f^{-1}(5) = 3$. So, $f^{-1}(5) = 3$.

Definition 4. Inverse Function Property: Let f(x) be a one-to-one function. Then

1.
$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = x$$
 for every x in the domain of f^{-1} .

2. $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$ for every x in the domain of f.

This means that f^{-1} undoes anything that f does to x.

Example 3. Verify that the following pairs of functions are inverses of each other.

$$f(x) = 2x + 3$$
 and $g(x) = \frac{x - 3}{2}$.

Solution:

$$(f \circ g)(x) = f(g(x))$$
$$= f(\frac{x-3}{2})$$
$$= 2(\frac{x-3}{2}) + 3$$
$$= x$$

So $(f \circ g)(x) = x$. Moreover,

$$(g \circ f)(x) = g(f(x))$$

= $g(2x + 3)$
= $\frac{(2x + 3) - 3}{2}$
= x

Then $(g \circ f)(x) = x$. Because $(f \circ g)(x) = (g \circ f)(x) = x$, then f and g are inverses of each other. We can sketch the graph of f^{-1} from the graph of f by using the following property:

Definition 5. Symmetry Property of the Graphs of f and f^{-1} : Let f(x) be a one-to-one function. Then the graph of f and the graph of f^{-1} are symmetric with respect to the line y = x.

Definition 6. Finding f^{-1} of a One-to-One function: Let f(x) be a one-to-one function. Then to find f^{-1} we follow the following steps.

- 1. Replace f(x) with y in the equation defining f(x).
- 2. Interchange x and y.
- 3. Solve the equation in Step 2 for y.
- 4. Replace y with $f^{-1}(x)$.

Example 4. Find the inverse of the one-to-one function $f(x) = \frac{x+1}{x-2}, x \neq 2$. Solution:

Step 1. $y = \frac{x+1}{x-2}$ Replace f(x) with y.

Step 2. $x = \frac{y+1}{y-2}$ Interchange x and y.

Step 3. Solve $x = \frac{y+1}{y-2}$ for y.

$$x = \frac{y+1}{y-2}$$

$$x(y-2) = y+1$$

$$xy-2x = y+1$$

$$xy-2x+2x-y = y-y+1+2x$$

$$xy-y = 1+2x$$

$$y(x-1) = 1+2x$$

$$y = \frac{1+2x}{x-1}$$

Step 4. $f^{-1}(x) = \frac{1+2x}{x-1}, x \neq 1$ Replace y with $f^{-1}(x)$.